This image shows André Jaquemod

André Jaquemod

M. Sc.

Akademischer Mitarbeiter
Institut für Werkzeugmaschinen
Prozessüberwachung und -regelung

Contact

+49 711 685 84194
+49 711 685 70040

Holzgartenstr. 17
70174 Stuttgart
Deutschland
Room: U1.109

Publikationen:
  1. 2025

    1. Jaquemod, A., Reuter, M., Palalic, M., & Möhring, H.-C. (2025). AI-Supported Process Monitoring in Machining / In-Process Quality Assurance of Inhomogeneous Materials Using Feature- Based Machine Learning Methods. In ZWF - Zeitschrift für Wirtschaftlichen Fabrikbetrieb: Vol. KI in Engineering und Produktion (pp. 263–268). Walter de Gruyter. https://doi.org/10.1515/zwf.2024-0136
  2. 2024

    1. Derbas, M., Jaquemod, A., Frömel-Frybort, S., Güzel, K., Moehring, H.-C., & Riegler, M. (2024). A Machine Learning Approach to Predict Properties of Wood Products during Milling. Forest Products Journal, 74, Article 2. https://doi.org/10.13073/fpj-d-24-00012
    2. Dünn, C., Kneifel, J., Roj, R., Jaquemod, A., Güzel, K., Pelshenke, C., Theiß, R., Möhring, H.-C., & Dültgen, P. (2024). AI-based Real-Time Analysis of Sawing Processes for the Identification of Materials. In G. G. zur Förderung angewandter Informatik e.V. (Ed.), AI4EA - Berlin Workshop on Artificial Intelligence for Engineering Applications. https://www.gfai.de/fileadmin/Downloads/Tagungsband/gfai-tagungsband-2024.pdf
    3. Palalić, M., Jaquemod, A., Güzel, K., & Möhring, H.-C. (2024). In-Process Monitoring of Inhomogeneous Material Characteristics Based on Machine Learning for Future Application in Additive Manufacturing. Journal of Machine Engineering. https://doi.org/10.36897/jme/187872
  3. 2023

    1. Jaquemod, A. (2023). Minimalmengenschmierung: Ein neuer Ansatz zur Produktivitätssteigerung in der Holzbearbeitung.
    2. Riegler, M., Derbas, M., Jaquemod, A., Frömel-Frybort, S., Güzel, K., & Möhring, H.-C. (2023). Machine Learning for Predicting Wood Properties during Milling.
    3. Jaquemod, A., Güzel, K., & Möhring, H.-C. (2023). The influence of high cutting speeds on cutting forces, surface roughness and tool wearin the milling process of wood.
    4. Derbas, M., Jaquemod, A., Frömel-Frybort, S., Güzel, K., Möhring, H.-C., & Riegler, M. (2023). Multisensor data fusion and machine learning to classify wood products and predict workpiece characteristics during milling. CIRP Journal of Manufacturing Science and Technology, 47, 103–115. https://doi.org/10.1016/j.cirpj.2023.09.003
    5. Jaquemod, A., Güzel, K., & Möhring, H.-C. (2023). Influence of Minimum Quantity Lubrication on Tool Temperature and Wear in Wood Machining. https://doi.org/10.1007/978-3-031-47394-4
  4. 2022

    1. Güzel, K., Jaquemod, A., Stehle, T., & Möhring, H.-C. (2022). Influence of minimum quantity lubrication on surface quality during circular sawing of wood (No. 1/2). 112, Article 1/2. https://doi.org/doi.org/10.37544/1436-4980-2022-01-02
    2. Jaquemod, A., Güzel, K., & Möhring, H.-C. (2022). Investigation of the Effect of Minimum Quantity Lubrication on the Machining of Wood. In LectureNotes in Production Engineering. German Academic Association for Production Technology (WGP).
To the top of the page